
- 联系人 : 车高平 肖吉盛
- 联系电话 : 0532-88365027
- 传真 : 0532-88319127
- 移动电话 : 13608980122
- 地址 : 青岛南京路27号
- Email : 88365027@163.com
- 邮编 : 266700
- 公司网址 : http://www.88365027.com
- MSN : 88365027@163.com
- QQ : 1265377928
为了满足传导发射限制的要求,通常使用电磁干扰(EMI)滤波器来电子产品产生的传导噪声。但是怎么选择一个现有的滤波器或者设计一个能满足需要的滤波器?工程师表现得很盲目,只有凭借经验作尝试。根据经验使用一个滤波器,如果不能满足要求再重新修改设计或者换另一个新的滤波器。要找到一个合适的EMI滤波器就成为一个费时且高成本的任务。电子系统产生的干扰特性解决问题要了解电子系统产生的总干扰情况,需要多少干扰电压才能满足标准要求?共模干扰是多少,差模干扰是多少?只有明确了这些干扰特性我们才能根据实际的需要提出要求。
HN6200A大型地网接地电阻测试仪
地网接地电阻测试仪 华能牌变压器有载分接开关测试仪 量大价优
测试操作步骤
1) 检查用于试验的电流线、电压线和地网线是否有断路现象(可以用万用表测量),地桩上的铁锈是否干净,其埋进深度是否合适(>0.5米),同时检查测试线与地桩的连接是否导通,如未导通,请处理后重新连接。
2) 电流测试线与电压测试线的长度比为1:0.618,电流测试线的长度应是地网对角线的3—5倍。
3) 电流测试线和电压测试线按规定的长度将一端与仪器相接后平行放出。另一端分别接在两支地桩上(如图2所示)。
4) 将已放好的测试线检查一遍,将万用表一端接电流线或电压线,另一端接地网线如无阻值显示即为断路,确认完好再进行测试。
5) 检查连线无误后,给仪器接上AC220V/50HZ电源,对仪器进行通电。
6) 按测量键,开始测量
7) 仪器显示测试结束后,记录测试数据(本仪器可多次重复测量)。
8) 关掉仪器电源后,拆除连线,测试过程结束。特性:-适配器用于高速USB2.(兼容USB1.1和USB3.)-符合CAN规范2.A/B和FD1.-CANFD比特率用于数据域(64位)从4kbit/s至12Mbit/s-CAN比特率从4kbit/s至1Mbit/s-时间戳分辨率1μs-CAN总线连接经由D-Sub,9-pin(符合CiA12)-CANFD控制器的FPGA实施-NXPTJA144GTCAN-电气隔离5V-CAN端子可通过焊接跳线-总线负载测量包括错误帧和过载帧-诱发错误发生功能用于进入和外出CAN报文-5-V供电CAN连接可通过焊接跳线连接,外部总线转换器。
3.仪器操作说明:
1) 打开电源开关,计算机进行自检,液晶屏显示中文主菜单如图3所示。
1)
2) 在光标当前所示项目,按▼ ▲键键可进行该项菜单的变更,并循环指示,流程见图5所示。
本仪器是测量地网接地电阻和接地点之间的接地导通的仪器。仪器采用变频抗干扰技术,不需大电流测量,能在变电站强干扰环境下测得50Hz的准确数据,测量结果由大屏幕液晶显示,自带微型打印机可打印输出。仪器能测量接地阻抗和接地电阻,更能真实反映地网的实际特性。新能源电机的超速测试从新能源汽车电机的发展来看,转速会越来越高,峰值转速会更高,超速测试的难度就会加大,按照电机测试标准,超速测试方法如下:测试目的:检查电机的安装质量、实验转子各部分承受离型力的机械强度和轴承在超速时的机械强度。测试方法:在被测电空载运行的情况下,使用被测电机控制器使电机匀速运行到1.2倍的转速,在此工况下运行不低于2min。或者被测电机不通电,在测功机的拖动下匀速运行到1.2倍的转速,同样在此工况下运行不低于2min。
◆大型地网接地电阻测试仪 产品特点
1、测量的工频等效性好。测试电流波形为正弦波,频率与工频相差更小0.25Hz,为5Hz。可用于50hz或60hz两种频率进行测量。
2、测量精度高。基本误差0.005Ω,可用来测量接地阻抗更小的大地网。
3、功能强大。可测量电流桩,电压桩,地网阻抗、接地电阻,接地导通、土壤电阻率等。
技术参数
1、测量范围:0~5000Ω
2、分 辨 率:0.001mΩ
3、测量误差:±(读数×2%+0.005Ω)
4、抗工频50Hz 电压干扰能力:10V
5、测试电流波形:正弦波
6、测试电流频率:单频:40-70Hz 分辨率0.01Hz 随意设置
双频:50±0.25Hz 到 50±5.0Hz 步进0.25Hz
60±0.25Hz 到 60±5.0Hz 步进0.25Hz
按 键可移动光标至各菜单项,并循环指示。被选中项反白字体显示。选择键的流程见图4所示。
地网接地电阻测试仪 华能牌变压器有载分接开关测试仪 量大价优另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。半导体器件产生的散粒噪声由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的电子和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电压时,耗尽区的变化相反。当电流流经势垒区时,这种变化会引起流过势垒区的电生微小波动,从而产生电流噪声。