
- 联系人 : 车高平 肖吉盛
- 联系电话 : 0532-88365027
- 传真 : 0532-88319127
- 移动电话 : 13608980122
- 地址 : 青岛南京路27号
- Email : 88365027@163.com
- 邮编 : 266700
- 公司网址 : http://www.88365027.com
- MSN : 88365027@163.com
- QQ : 1265377928
青岛华能HN系列 标准电流互感器 定制定做HN10A互感器特性综合测试仪
HN12A变频式互感器综合仪(CT/PT仪)
测量校核型号的CT、PT,包括保护CT、计量CT、TP级暂态CT、励磁饱和电压达到40KV的CT、变压器套管CT、各电压级PT等. 点电压/电流、10%(5%)误差曲线、准确限值系数、仪表保安系数、二次时间常数、剩磁系数、准确级、饱和和不饱和电感等CT、PT参数的测量.对于通信系统来说,谐波失真信号表现为通信频带中的干扰信号,容易导致系统的信噪比下降,严重影响通信系统的容量和质量,因此快速的测量谐波失真显得非常重要。谐波失真产物属于一种可预见性的失真,它们直接与输入信号的频率相关。在实际测量中,通常使用频谱仪来测量信号的总谐波失真(TotalHarmonicDistortion,简称THD),并以此作为谐波失真程度的评估依据。方法一:利用扫频功能手动测量利用频谱仪测量信号的谐波失真时,在测量过程中经过多次手动调节信号的频率、分辨率带宽、扫描时间、频宽等仪器测量参数,并利用标记读出各次谐波的幅度值,然后根据谐波失真计算公式手动计算总谐波失真值。
自动给出点电压/电流、 10%误差曲线、 5%误差曲线、准确限值系数(ALF)、 仪表保安系数(FS)、 二次时间常数(Ts)、剩磁系数(Kr)、准确级、饱和和不饱和电感等参数。兰色段开始变弯曲,斜率逐渐变小。红色段就几乎变成水平了,这就是“饱和”。实际上,饱和是一个渐变的过程,兰色段也可以认为是初始进入饱和的区段。在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件。在图中就是假想绿色段继续向上延伸,与Ic=50MA的水平线相交,交点对应的Ib值就是临界饱和的Ib值。图中可见该值约为0.25mA。由图可见,根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。
具体接线步骤和说明如下:
断开电力线与CT一次侧的连接,未接地的电力线较长,会给CT一次侧的测量引入较大干扰,参见图3.4。
将CT一次侧一端连接至CTPT仪CT一次侧/PT二次侧黑色端子将CT一次侧另一端连接至CTPT仪CT一次侧/PT二次侧红色端子将CTPT仪的接地柱连接到保护地PE将按照图3.3所示,断开被测CT二次侧和二次负荷的连接在对变比值相同的多绕组电流互感器进行CT或CT比差角差测试时,没有测试的二次绕组应短接,否则测试误差将会偏大保护10P10,万用表测量法是指用万用表测量电路中电压、电流、电阻器的量值,从而判断故障的方法。所以,万用表测量法又分为电阻测量法、电压测量法和电流测量法。它是检修电子产品时使用多的一种方法。另外,检测电子元器件的好坏,往往也是使用万用表来测量的。电阻测量法电阻测量法是利用万用表欧姆挡,通过检查被测电器电路与地之间的直流值及有关器件的阻值是否正常,来故障所在的方法。电阻测量法有“在线”和“脱焊”两种测量方法。暂态TPY三个绕组的2000/1的CT,进行0.5级绕组的比差角差测量时应按照图3月1日,能源局等部门印发《关于2018年光伏发电有关事项的通知》(因落款日期为5月31日,业内称为“531新政”),提出暂不安排2018年普通光伏电站建设规模,仅安排10GW左右的分布式光伏建设规模,进一步降低光伏发电的补贴强度。这突如其来的新政犹如一盆凉水,让一度沉浸在状态的光伏行业逐渐清醒。压力催生动力,新政的发布意味着光伏企业需要转变发展方向,通过更多的技术升级降低光伏发电成本,同时这也是一个契机,企业也要更加沉下心来去解决之前光伏系统里遇到的问题。.4.1进行接线具体接线步骤和说明如下:将CTPT仪的接地柱连接到保护地PE将按照图3.6所示,断开PT二次侧和二次回路的连接将CTPT仪功率输出和CT二次侧/PT一次侧的黑色端子连接至二次负荷的一端,参见图3.6将CTPT功率输出和CT二次侧/PT一次侧的红色端子连接至二次负荷的另一端为了消除接触电阻的影响,在连接CTPT仪的端子时,CT二次侧/PT一次侧的连接端子应保持在功率输出端子的内侧RSENSEESL模型此电感取决于所选的特定检测电阻。某些类型的电流检测电阻,金属板电阻,具有较低的ESL,应优先使用。相比之下,绕线检测电阻由于其封装结构而具有较高的ESL,应避免使用。一般来说,ESL效应会随着电流的增加、检测信号幅度的减小以及布局不合理而变得更加明显。电路的总电感还包括由元件引线和其他电路元件引起的寄生电感。电路的总电感也受到布局的影响,因此必须妥善考虑元件的布局,不恰当的布局可能影响稳定性并加剧现有电路设计问题。青岛华能HN系列 标准电流互感器 定制定做